E. T. JAYNES

SOME RANDOM OBSERVATIONS

INTRODUCTION

When told of the plan to devote an issue of Synthese to the principle of
maximum entropy (PME), my first reaction was puzzlement as to why
philosophers should be so interested in it. Then a plausible reason
appeared to be that PME has been perceived (correctly, in my view) as
a small but nonnegligible part of a fundamental revolution in thought
now taking place.

We have the analysis of Kuhn describing how new foundation
concepts make their way into science; but today in order to study this
one does not need to go back to the history books to read of epicycles
and ellipses. We can observe in our midst the phenomenon of one
paradigm in the process of being replaced by another.

In one respect, our present revolution is not like those of cosmology,
evolution, or relativity — which, however grand their concepts, were
specialized to one particular area of science. What we lack in grandness
of concept we make up for in generality; the new revolution concerns
the principles of all human inference, and it applies with equal force to
all areas of science. The conceptual disorientation and resulting con-
troversy are being exhibited now in the scientific journals of half a
dozen different fields.

But we have to admit that the spectacle unfolding today teaches us
very little that could not have been learned from those history books; it
is astonishingly like what happened in the time of Galileo, down to such
small details as to give one a spooky feeling. However, this is not the
place to develop that theme.

HOW THE REVOLUTION STARTED

It should be pointed out that my publications, starting in 1957, make a
rather late entry into this movement. Prior to that, many important
works — by B. de Finetti, H. Jeffreys, R. T. Cox, C.E. Shannon, 1. J.
Good, A. Wald, R. Carnap, L. J. Savage, and D. V. Lindley — had
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started this general shift in thinking. These works had laid the basis of
the revolution by their demonstrations that probability theory can deal,
consistently and usefully, with much more than “‘frequencies in a
random experiment”’.

In particular, Cox (1946) proved by theorem what Jeffreys (1939)
had demonstrated so abundantly by example; the equations of prob-
ability theory are not merely rules for calculating frequencies. They are
also rules for conducting inference, uniquely determined by some
elementary requirements of consistency. de Finetti, Wald, and Savage
were led to the same conclusion from entirely different viewpoints.

As a result, probability theory, released from the frequentist mold in
which Venn, von Mises, and Fisher had sought to confine it, was
suddenly applicable to a vast collection of new problems of inference,
far beyond those allowed by “‘orthodox’ teaching. One might think that
an explosive growth in new applications would result. But it did not,
until quite recently, because half of probability theory was missing.

Orthodox statistics had developed only means for dealing with
sampling distributions and did not even acknowledge the existence of
prior probabilities. So i1t had left half of probability theory — how to
convert prior information into prior probability assignments — un-
developed. Jeffreys (1948) recognized that this half was a necessary
part of any full theory of inference, and made a start on developing
these techniques. Indeed, his invariance principle was closely related to
PME, starting from nearly the same mathematical expression.

Much earlier, both Boltzmann (1877) and Gibbs (1902) had invoked
the mathematical equivalent of PME as the criterion determining
Boltzmann’s “most probable distribution’ and Gibbs’ ““‘grand canonical
ensemble’’. But this fact had been completely obscured by generations
of textbook writers who sought to put frequentist interpretations on
those results, not realizing that in so doing they were cutting Statistical
Mechanics oft from generalizations to nonequilibrium problems.

It was only at this point that I entered the field, with the suggestion
that Shannon’s Information Theory provided the missing rationale for
the variational principle by which Gibbs had constructed his ensembles.
In my view, Gibbs was not assuming dynamical properties of an
“ergodic’ or “stochastic’ nature, but only trying to construct the ““‘most
honest” representation of our state of information. One can find much
support for this view in Gibbs’ own words.

Pragmatically, in equilibrium problems this could not lead to any new
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results because PME yielded the same algorithm that Gibbs had given
and which was already in use as the basis of our calculations. The value
of the principle lay rather in the realization of its generality; when seen
in this light it was clear that the Gibbs “canonical ensemble” formalism
was not dependent for its validity on the laws of mechanics; it would
apply as well to any problems of inference, in or out of physics, that fit
into the same logical format.

The place that PME occupies in our present revolution is that it is
one of the principles that has proved useful — and fairly general — in the
task of developing that missing half (logically, the first half) of prob-
ability theory. Other such principles are group invariance, mar-
ginalization, coding theory, and doubtless others not yet thought of;
this appears to be a fertile area for research.

Turning to the present discussions of Bayesian methods and PME,
there is an appalling gulf between what scientists are doing with them
and what philosophers are doing to them. What is needed most is not
still more contention over the exact meaning of things that were
written thirty years ago, but a kind of report from the outside world
on what has happened since, how these methods have evolved, and what
they are accomplishing today. However, since I was asked to comment
on other works published in this issue and elsewhere, only a little of this
can be given here.

It is of course distressing that a few philosophers disapprove of the
work of so many scientists, engineers, economists, and statisticians on
Bayesian/PME methods, out of misunderstanding. However, 1 can
speak only for myself, and even then, if thirty commentators interpret
one’s work in thirty different ways it is not feasible to analyze them all
and write — or read — thirty separate replies. Therefore, I can only
restate my position and some technical points as clearly as possible,
then reply to a few specific comments where it appears that failure to do
so would encourage further confusion.

TERMINOLOGY

One critic states that my terminology is nonstandard and can mislead.
He fails to note that this applies only to the 1957 papers; and even there
my terminology was standard when written. It 1s, for example, essen-
tially the same as that used by Jimmie Savage (1954). It is not our fault
that Latter-Day Commentators, in ill-advised attempts to ‘“‘classify
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Bayesians”, have scrambled the meanings of our words, producing a
language appropriately called NEWSPEAK. To translate, we note a
few approximate equivalences between standard terminology of the
1950’s and NEWSPEAK:

1950°S NEWSPEAK
objective orthodox
subjective objective
personalistic subjective
Bayes’ theorem conditioning
conditioning ancillarity

To this we may add the alarming spread in use of the terms “prior
distribution” and ‘“‘posterior distribution” (which had clearly
established meanings as referring to the application of Bayes’
theorem) to describe instead two different maximum entropy dis-
tributions. As a result, some writers are now unable to distinguish
between PME and Bayes’ theorem and are led thereby into nonsensical
calculations and claims.

PME belongs to that neglected first half of probability theory; Bayes’
theorem to the second half that starts only after a prior has been
assigned by PME or one of the other principles (as we shall see, the
second half, given one prior, can then determine other priors consistent
with it).

Because of this utter confusion that has been visited upon us, it is
today misleading to use the terms “‘subjective” and “objective” at all
unless you supply the dictionary to go with them. My more recent works
have used them only in such phrases as “‘subjective in the sense that

kR4

My papers of 1957 used the term “subjective’” not only in the
superficial sense of “not based on frequencies”, but in a deeper sense
as 1s illustrated by the following statement of position:

In relativity theory we learn that there is no such thing as “absolute™
or “‘objective” simultaneity. Nevertheless, each observer still has his
“subjective” simultaneity, depending on his state of motion; and this,
being a consequence of using a coordinate system, is just as necessary in
describing his experiences as it was before relativity. The advance made
by relativity theory did not, then, lie in rejecting subjective things; but
rather n recognizing that subjective character, so that one could make
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proper allowance for it, the ‘“allowance” being the Lorentz trans-
formation law, which shows how the coordinates we assign to an event
change as we change our state of motion.

It has seemed to me from the start, that a scientist should have just
the same attitude toward probability. There 1s no such thing as
“absolute” or “physical’ probability; that is just as much an illusion as
was absolute simultaneity. Yet each of us still has his “subjective™
probability, depending on (or rather, describing) his state of knowledge;
and this is necessary for conducting his reasoning. Achievement of
rational thinking does not lie in rejecting ““subjective” probabilities, but
rather in recognizing their subjective character, so that we can make
proper allowance for it, the “allowance” being Bayes’ theorem, which
shows how the probability we assign to an event changes as we change
our state of knowledge.

The phrase “‘reasonable degree of belief” originates from Jefireys,
although some try to connect it to me. My admiration for Jeftreys has
been expressed sufficiently (Jaynes, 1980); but his terminology created
some of his difficulties. That innocent looking little word “‘reasonable”
is to some readers as the red flag to the bull; the adrenalin rises and they
miss the substantive content of his message. Jimmie Savage (1954) used
instead ‘“‘measure of trust” which I feit had both economic and
emotional overtones. Therefore 1 have used the less loaded phrase
“degree of plausibility” which seems to express more accurately what
inference really imnvolves.

PROBABILITY AND FREQUENCY

One commentary notes, with commendable perceptiveness, that I do
not “disallow the possibility’” of the frequency interpretation. Indeed,
since that interpretation exists, it would be rather hard for anyone to
deny the possibility of it. I do, however, deny the necessity of it; and this
is a change from the position stated in my 1957 papers. At that time, I
was under the impression that some applications required a frequency
interpretation, simply because my professors and textbooks had said so,
and had not yet fully shaken off their authority. It required a few more
years of experience to realize that every connection between prob-
ability and frequency that is actually used in applications, has proved on
analysis to be derivable as a consequence of the Laplace-Jeftfreys—Cox
form of probability theory.
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In my terminology, a probability is something that we assign, in order
to represent a state of knowledge, or that we calculate from previously
assigned probabilities according to the rules of probability theory. A
frequency is a factual property of the real world that we measure or
estimate. In this terminology, the phrase “‘estimating a probability™ is
just as much a logical incongruity as “‘assigning a frequency”.

The fundamental, inescapable distinction between probability and
frequency lies in the aforementioned relativity principle. Probabilities
change when we change our state of knowledge; frequencies do not. It
follows that the probability p that we assign to an event E can be equal
to its frequency f only for certain particular states of knowledge.
Intuitively, one would expect this to be the case when the only
information we have about E consists of its observed frequency; and
the mathematical rules of probability theory confirm this in the follow-
ing way.

We note the two most familiar connections between probability and
frequency. Under the assumption of exchangeability and certain other
prior information (Jaynes, 1968, or Skilling’s presentation in this issue),
the rule for translating an observed frequency in a binary experiment
into an assigned probability in Laplace’s rule of succession. Under the
assumption of independence, the rule for translating an assigned
probability into an estimated frequency is Bernoulli’s weak law of large
numbers (or, to get an error estimate, the de Moivre-Laplace limit
theorem).

However, many other connections exist. They are contained, for
example, in the principle of transformation groups (Jaynes, 1971), in
the PME formalism, and in the theory of random fluctuations (Jaynes,
1978).

If anyone wished to research this matter, I think he could find a dozen
logically distinct connections between probability and frequency, that
have appeared in various applications of PME, transformation groups,
and Bayes’ theorem. But these connections always appear automatic-
ally, whenever they are relevant; there is never any need to define a
probability as a frequency.

Indeed, Bayesian theory may justifiably claim to use the notion of
frequency more effectively than does the ““frequency” theory. For the
latter admits only one kind of connection between probability and
frequency, and has trouble in cases where a different connection is
appropriate. Those cases include some important, real problems which
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are today at the forefront of new applications.

Today, Bayesian practice has far outrun the original class of prob-
lems where frequency definitions were usable; yet it includes as special
cases all the useful results that had been found in the frequency theory.
In discarding frequency definitions, then, we have not lost “objec-
tivity”’; rather, we have advanced to the flexibility of a far deeper kind
of objectivity than that envisaged by Venn and von Mises. This
flexibility is necessary for scientific inference; for most real problems
arise out of incomplete information, and have nothing to do with
random experiments.

BUT WHAT ABOUT QUANTUM THEORY?

Those who cling to a belief in the existence of “physical probabilities™
often react to the above arguments by pointing to quantum theory, in
which physical probabilities appear to express the most fundamental
laws of physics. Indeed, it was just this circumstance that first aroused
my interest in the philosophy of probability theory. But it needs to be
emphasized that present quantum theory uses entirely different stan-
dards of logic than does the rest of science.

In biology or medicine, if we note that an effect E (for example,
muscle contraction, phototropism, digestion of protein) does not occur
unless a condition C (nerve impulse, light, pepsin) is present, it seems
natural to infer that C 1s a necessary causative agent for E. Most of
what is known in all fields of science has resulted from following up this
kind of reasoning. But suppose that condition C does not always lead to
effect E; what further inferences should a scientist draw? At this point
the reasoning formats of biology and modern physics diverge sharply.

In the biological sciences one takes it for granted that in addition to C
there must be some other causative factor F, not yet identified. One
searches for it, tracking down the assumed cause by a process of
elimination of possibilities that is sometimes extremely tedious. But
persistence pays off; over and over again medically important and
intellectually impressive success has been achieved, the conjectured
unknown causative factor being finally identified as a definite chemical
compound. The acetyl-choline, auxin, and trypsin were found in this
way. Most enzymes, vitamins, viruses, and other biochemically active
substances owe their discovery to this reasoning process.

In modern physics, we do not reason in this way. Consider, for
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example, the photoelectric effect. The experimental fact is that the
electrons do not appear unless light is present. So light must be a
causative factor. But light does not always produce ejected electrons;
even though the light from a unimode laser is present continuously, the
electrons appear only at particular times that are not determined by any
known parameters of the light. Why then do we not draw the obvious
inference, that in addition to the light there must be a second causative
factor, still unidentified, and the physicist’s job is to search for it?

What we do today is just the opposite; when no cause is apparent we
postulate that no cause exists — ergo, the laws of physics are in-
deterministic and can be expressed only in probability form. There is no
“auxin” for electrons: the light determines, not whether a photoelectron
will appear, but only the probability that it will appear.

Biologists have a mechanistic picture of the world because, being
trained to believe in causes, they continue to search for them and find
them. Physicists have only probability laws because for two generations
we have been trained not to believe in causes — and so we have stopped
looking for them. To explain the indeterminacy in current physical
theories we need not suppose there is any indeterminacy in Nature; the
mental attitude of physicists is already sufficient to account for it.

I suggest, then, that those who try to justify the concept of “physical
probability” by pointing to quantum theory, are entrapped in circular
reasoning. Probabilities in present quantum theory express the in-
completeness of human knowledge just as truly as did those in classical
statistical mechanics; only its origin is different.

In classical statistical mechanics, probability distributions represen-
ted our ignorance of the true microscopic coordinates — ignorance that
was avoidable in principle but unavoidable in practice, but which did
not prevent us from predicting reproducible phenomena.

In the Copenhagen interpretation of quantum theory, probabilities
express the ignorance due to our failure to search for the real causes of
physical phenomena. This may be unavoidable in practice, but in our
present state of knowledge we do not know whether it is unavoidable in
principle; the Copenhagen “central dogma™ simply asserts this, and
draws the conclusion that belief in causes, and searching for them, is
philosophically naive.

The deepest driving motivation behind all my work on statistical
theory is not just the desire for more powerful practical methods of
inference. It is rather the conviction that progress in basic understand-
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ing of physical law, prevented for fifty years now by the positivist
Copenhagen philosophy, can be resumed only by a drastic modification
of the view of the world now taught to physicists.

Present quantum theory contains an enormous amount of very
fundamental truth; but its mathematics describes in part physical law, in
part the process of human inference, all scrambled together in such a
way that nobody has seen how to separate them. Many years ago, I
became convinced that this unscrambling would require that prob-
ability theory itself be reformulated so that it recognizes explicitly the
role of human information and thus restores the distinction between
reality and our knowledge of reality, that has been lost in present
quantum theory. Bayesian probability theory appears to be the only
form capable of doing this.

TIME CHANGES ALL THINGS

One of the complicating factors in this discussion is that commentaries
are addressed to work done over many years. Of course, my own views
about probability theory have changed in this time. As many readers
know, I have been trying to finish a book on probability theory since
1956, but cannot because new, exciting things are still being discovered
too fast to write up. In fact, a new caution has been forced on my
current writing, because my views on probability theory are today in
process of more rapid change than at any time in the past.

Several recent events have conspired to bring this about. New
applications of maximum entropy, new facts unearthed in mar-
ginalization theory, discovery of the combinatorial work of Gian-Carlo
Rota, some belated acquaintance with computer design and program-
ming, that changed my perception of the realities of implementation —
all have displaced my thinking from its settled position of ten years ago.

Another factor has been my growing dismay at the way young people
are, like lemmings, rushing headlong into a sticky swamp of paradoxes
(nonconglomerability, Borel-Kolmogorov, marginalization, improper
priors, finite vs. countable additivity, etc.) and their seeming inability to
recognize that these have nothing to do with real substantive issues: In
most cases, they demonstrate only the need for greater caution in
approaching infinite sets.

The projected book was held up for a long time because the theory
seemed incomplete; a major aim was to settle this 150-year-old
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controversy by refinements of the theorems of R. T. Cox (1961),
showing that the product and sum rules of probability theory are the
only consistent rules for conducting inference. In this endeavor,
everything could be established in a satisfactory way for probabilities on
finite sets, but I could not find a neat, elegant argument that would do
this as well for infinite and continuous sets.

After years of failure, and then seeing Rota consistently doing things
right, and the lemmings consistently doing things wrong, the suspicion
grows that the generalization I have been seeking may not, after all,
exist. It is beginning to appear as if all correct results in probability
theory are either combinatorial theorems on finite sets or well-behaved
limits of them.

Evidence for this was accumulated very slowly and painfully, but
eventually there came the insight that makes it possible to summarize it
all in one paragraph. There is a single technique by which all the
aforementioned paradoxes — and any number of new ones — can be
manufactured. It requires only three steps: (a) Start from a correct,
well-behaved result on a finite set; (b) Pass to the limit of an infinite set
without specifying how the limit is approached; (c) Ask a question
whose answer depends on how the limit was approached.

This procedure i1s guaranteed to produce a paradox, in which a
seemingly reasonable question has more than one seemingly right
answer. For example, nonconglomerability is an artifact created thus:
(a) Start from a finite two-dimensional (N X M) array of probabilitics
P;(1=i=N;1=j=M); (b) Pass to the limit N— o, M— o without
specifying the limiting ratio (N/M). (c) Ask for the probability, on the
infinite set, of the event (i > j). If one looks only at the limit, and not the
limiting process, the source of the difficuity is concealed from view and
may not be discovered for a long time.

More generally, these paradoxes are simply the result of trying to
jump directly into an infinite set without considering any limiting
process from a finite set. The belief that infinite sets possess some kind
of “existence’” and mathematical properties in their own right, in-
dependently of the limiting process that defines them, is very much like
the belief in absolute probability or absolute simultaneity. Cantor and
Hilbert apparently held some such belief. But Gauss, Kronecker,
Poincaré, Brouwer, and Weyl have all warned against this kind of
reasoning; perhaps it is time to heed them.

On the other hand, the consistency theorems of Cox apply to finite
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sets and nobody has been able to produce any paradox as long as he
applies the product and sum rules of probability theory, derived by Cox,
on finite sets. It thus appears that the finite discrete theory of inference
that T had developed in 1956, but thought to be incompliete, may be
after all the whole thing. It seemed inelegant to define the entropy of a
continuous distribution from the limit of a discrete one; but perhaps
that is the only justification that exists. And aesthetically, with the
development of a little bit of computer mentality, discreteness no
longer seems as ugly as it once did.

Of course, these remarks are offered only as interesting (or perhaps
provocative) conjectures; and not as revelations of a startling new
discovery about the nature of probability theory. But it seemed
advisable to mention this evolution of thinking, so that others may
better judge whether to dwell on views expressed long ago.

INTUITIVE PARADOXING

Another of the popular games that people play with Bayesian inference
is a variant of the lemming procedure. Instead of using ill-defined
infinite sets to generate a paradox between two mathematical results,
one may equally well manufacture a paradox between the mathematical
theory and his own intuitive commonsense judgments. The vehicle for
this is the improper (i.e., nonnormalizable) prior probability distribution
— again, considered as an object in its own right without regard to the
limiting operation that defines it.

Passage from a probability distribution on a finite set to a proper
continuous distribution 1s almost always uneventful, leading to no
paradox but rather to some of the most important resuits of probability
theory. But passage from a proper continuous distribution to an
improper one (such as a uniform density p(f) extending all the way to
+ oo, or a Jeffreys prior density 1/f extending to f=0), may lead to
useful results or to paradoxes, depending on further details of the
problem, including the particular data set D that has been observed.

Study of these matters has convinced me that the Cox finite set
approach gives us a theory of probability that is general enough for all
real problems and free of paradoxes (in contrast, to define probability in
terms of additive measure leaves one at the mercy of all the paradoxes
of infinite set theory, which are irrelevant for real problems). In this
theory, rules of calculation with improper distributions are not defined
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except as a limiting form from a sequence of proper distributions — and
then only when that limit proves to be mathematically well-behaved.

Again, the paradoxes can be manufactured if one violates these rules
by jumping directly into an improper prior without bothering to check
whether it 1s a well-behaved limit from a proper one.

It is a common experience, in the present primitive state of
development of that neglected half of probability theory, that some
proposed prior distribution looks harmless, until analysis shows that it
has unexpected consequences. Typically, one finds that it leads to a
posterior distribution that our intuitive common sense rejects quite
forcefully. Supposing the sampling distribution and data established
beyond question, this leaves two possibilities: (A) intuition is faulty, and
needs to be re-educated; (B) intuition is sound, but it is using prior
information different from that expressed by the prior probability
distribution. |

As Skilling notes, the 1/f prior cannot be accepted as generally valid.
It hardly requires numerical examples to show this, for if we know that
f> 0 but we assign a prior distribution that diverges as f— 0, we have
only to perform an experiment (1.e., obtain a particular data set D) that
does not exclude arbitrarily small values of f; and there is our paradox.
For our inferences about f from such data then depend, necessarily, on
our prior information concerning the possibility of very small values of
f; but our prior distribution has thrown this away.

Indeed, it seems a platitude that if the data D are uninformative
about any question Q (arbitrarily small f being one example), then our
posterior opinions about Q will depend, necessarily, on our pnor
opinions about Q. If we assign a prior distribution that represents an
absurdly impossible state of knowledge concerning Q, then that
absurdity, if uncorrected by the data, must remain in the posterior
distribution.

But it seems strange that, if one knows in advance what question Q
he is going to ask, he would perceive the absurdity only after seeing
data D that are uninformative about Q! Why did he not perceive it
before seeing such data? This is a psychological peculiarity that we
cannot account for at present.

Let us extend ths observation. Given any improper prior ptf|I), one
can find a question Q to which p(flI) gives an absurd answer. If the
sampling distribution is sufficiently broad, one can also find a conceiv-
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able data set D which is so uninformative about Q that the absurdity will
remain in the posterior distribution p(f|DI). So we have a rich field
for the playing of this game; one can mass-produce as many paradoxes
as one pleases.

Skilling has examined a few improper priors in a few circumstances,
and duly finds examples of this phenomenon. From this evidence, he
feels able to conclude: ““. . . no prior can be found which is usable for all
experiments .. .."”

From other evidence, I conjecture instead: “*Any proper prior p(f]I)
represents a conceivable state of prior knowledge; given that and any
experiment p(D|fI), the posterior distribution p(f|DI) will represent
the reasonable conclusions from that prior information and data. Para-
doxing ceases when impropriety ceases’ .

This does not mean'that we should never never use an improper prior.
Quite the contrary, most of the useful results of Bayesian inference
have been obtained with improper priors. It means, rather, that before
using an improper prior we need to check its suitability. This depends
on the question we are asking and the sampling distribution (for
example, there can be no objection to the uniform prior if we are
estimating the mean of a normal distribution of known variance; for
then the evidence of a single data point is enough to cancel the
absurdity).

My conjecture is that a proper prior is respectable enough to go
anywhere, and will not embarrass you whatever experiment you per-
form or whatever question you ask.

But the above remarks, while warning us of the bad roads, do not
direct us to the good ones; can we now become more constructive and
show how, in the present state of that neglected half of probability
theory, one can actually find reasonable priors for the problems that
Skilling describes?

We cannot go into specific technical details here, because that
requires knowledge of the subject matter (astronomy and instrumen-
tation) far beyond what I possess. At the time of writing (January 1983)
it appears that John Skilling and 1 may soon be working together on
these problems, and in another year or so we shall both be much better
informed about them. But I can indicate here a general line of
reasoning that starts us off on one of the good roads, aware that there
may be others equally good.
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Actually, Skilling and I are not nearly as far apart in our views as
might appear superficially. But a point of principle can be expounded
more clearly in a situation of greater contrast; and so I want to magnify
that difference in the form of a Galilean Dialogue between two
imaginary scientists.

Mr. A, unlike Skilling, has only orthodox statistical training and no
Bayesian experience at all; but he does share Skilling’s interest in
estimating a parameter f of the Crab nebula. Mr. B is not an
astronomer, but does share some of my experience in the analytical
construction of priors.

A GALILEAN DIALOGUE
Prologue

Mr. A has been advised to use Bayesian methods, and as the scene
opens he is expressing the standard doubts of nonBayesians.

A: “My prior information I obtained about the Crab nebula is just too
vague. No definite prior probability distribution p(f|I) can be based
on it.”

B: *““Can you think of some additional information which, if you had it,
would help to make the problem more definite?”

A: “Of course. If only I knew the total energy flux T of the Crab
nebula, then the probability p(f| TI) would be a determinate
quantity.”

B: “Excellent. You perceive a quantity T, not yet incorporated into
the problem, that would be relevant. Then let’s just introduce T
into the conversation; using the sum rule, then the product rule, we
have:

p(ID = | pTIDAT = | pf| THR(TI DT, )

Now, then, what do you know about T?”

A: “Nothing. That’s just why....”

B: “But you must know something, else how could you know that T
exists and is relevant? Surely you know it is bounded; after all, we
aren’t being scorched by the radiation from the Crab nebula.”,

A: “Well, yes, but....”
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“And surely you know that it is not zero, else we would never be
thinking about this problem.”

: “Well, yes — but I don’t have any numbers, so how can that help?”

“But you do have some numbers, just think a bit harder. You know
that T < 10° watts, because that would drain off the entire E = mc?
energy of the Crab nebula in a microsecond. And you know that
T > 10" watts, because that is less than one microwave photon in
the age of the universe, and nobody outside would know the Crab
nebula exists. So you have two numbers, T, and T,.,, within
which you know the true value surely lies.”

: But this 1s silly. Such vague stuff can’t help me!”

“O ye of little faith!”” How do you know such stutf can’t help until
you give it a chance? Actually, knowing that log 7T is confined to a
finite interval, (—60, +60), is saying quite a lot. [t makes the integral
() converge, so now we can get a definite prior p(f|I), which a
moment ago you thought was impossible. We have made real
progress.”

: “But the result is going to depend on those ridiculous numbers, 10%°

and so on. They don’t mean anything.”

: “Wait—we’re not yet finished. How do you know the result depends

on T, and T, until you study the matter? Let me ask a new
question: Suppose you knew f; could you then estimate T7?”

: Of course. p(f|TI) is a definite, calculable sampling distribution

and as a function of T it is the likelihood function. I could get a
maxtmum likelihood estimate of T, and find the accuracy of the
estimate by setting up a 90% confidence interval. And I can do all
this without ever mentioning those useless prior probabilities.”
“Would that confidence interval extend out to T, OF Toyay?”’
“Of course not. Those are, as I said, ridiculous numbers by many
orders of magnitude.”

: ““Then, in fact, the integral will converge so well that the result, if

we round it off to four or five significant figures, won’t depend on
what those ridiculous numbers are.”

“Well, yes, that’s right. But I have no idea what p(T|I) is in the
region where it does contribute to the integral (), so we’ll still have
no definite solution.”

: “But we’re still not finished. You said you don’t have any idea of

what T is. Now how wide is that likelihood function going to be?”
(pause) ““Actually, it’s very broad. It would cover about a 2: 1 range
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so I couldn’t estimate T very accurately from f, after all. So it’s
clear that your line of reasoning is not going to help us.”

B: “Actually, 2:1 is quite a small range, only 0.3 on our logarithmic
scale of (=60, +60). But surely the prior density p(T|I) that
describes your prior information about 7" does not vary widely in an
interval of 0.3; if it did, that would imply some rather definite prior
information about T, and you said a moment ago that you know
nothing about its value.”

A: “Yes, that’s right - Oh — now I see the point.”

B: “So now perhaps we are finished.”

The Moral

To find prior probabilities we do, of course, need some actual prior
information; merely proclaiming “‘complete ignorance” is not enough.
But a surprisingly small amount of additional information suffices. If
you can find any quantity T that is relevant to the inference (i.e.,
sufficiently relevant to make its likelihood integrable), then by the
method () extremely vague information about T will give you a
definite prior probability p(f|I) for f; something that anti-Bayesians
think is impossible to determine. Knowing the numerical value of T is
not necessary; the mere qualitative fact of its existence and finiteness is
already sufficient.

This is a very important consequence of probability theory, showing
how with a little input p(T|I) from that neglected first half, the
Bayesian second half can, so to speak, take over the job of the first half
and construct prior probabilities for other quantities. But it is something
which statisticians could have learned from Harold Jeffreys in the
1930’s, had they been willing to listen to him.

At this point Mr. A, slightly put off by the above turn of events,
overhears this and returns to the attack; our dialogue resumes;

A: “But wait a minute, we’re not finished. There isn’t any definite
solution because maybe there’s another quantity U that is also
relevant. If T used U instead of T, surely I wouldn’t get the same
result p(f|I) in general.”

B: “Of course you wouldn’t; nor should you, for you would be solving a
different problem. Knowing about T but not U, is a different state
of knowledge from knowing about U but not T.”
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A: “But now your whole system crashes after all; for how can I ever
know which quantities to take into account, or which other ones
may be lurking out there unrecognized? There are no definite
Bayesian inferences.”

B: (wearily) “The tenacity and determination with which the orthodox
mind resists simple common sense is truly amazing. I have now to
point out a principle of morality, then one of pragmatism. Morality:
In principle, one should always take into account all the prior
information he has. To withold pertinent information from the
theory, and then blame the theory for giving unsatisfactory results,
is intellectual dishonesty. If you know about both T and U, then
you should take them both into account by using their joint
distribution in (). Pragmatism: In the real world, the problem we
face is, necessarily, to do the best we can with the information we
have. If someone better informed than I takes into account further
information of which 1 am unaware, then he will probably ~ and
deservedly — make better inferences than I will. But an alert mind
can recognize, from the failure of its inferences, that additional in-
formation was needed, and from the nature of the failure will have a
clue as to where to seek it. You seem to think it would be a calamity
to leave out a pertinent piece of prior information “lurking out
there”; why don’t you see the Bayesian formalism as a golden
opportunity 1o learn what is pertinent?”

REPLIES TO COMMENTS ON PME

Having spent some thirty years in the development and use of PME
methods in physical problems where the realities of the situation could
not be ignored, I know very well how Hannibal felt on beholding a
philosopher, who had never seen a battle line, discoursing on wartare.
The urge to react as Hannibal did is overpowering.

Hannibal’s critic would, of course, concentrate on problems that
existed only in his imagination, and would be quite unaware of the real
circumstances that determine the actual course of a battle. Likewise,
some of my critics become mired in worries about such things as the
exact meaning of the constraints, but seem unaware of the real
difficulties that we encounter in applying PME to new problems.

The main difficulty is, almost always, how to choose the “hypothesis
space” on which we define our entropies. I have been held up for years
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by unsure judgment in defining an hypothesis space, but have never yet
seen a problem in which there was any difficuity in deciding which
constraints should be applied.

In statistical mechanics, the hypothesis space problem was solved
long ago. Extending Liouville’s theorem to quantum mechanics, the
linearly independent ‘“‘global” quantum states of a system define,
according to all present knowledge, the proper space on which PME
leads, unerringly, to correct predictions. But what takes their place in a
problem of econometrics? In trying to apply PME in a new area we are
sometimes in a situation corresponding to (if one can imagine it)
statistical mechanics before the discovery of Liouville’s theorem.

In maximum-entropy image reconstruction, the most obvious hypo-
thesis space has led to important advances; yet as a careful reading of
John Skilling’s comments may suggest, deeper problems of defining this
space are going to arise as we search for future refinements. For
example, should we reduce it to individual photons (I think not); or
define the smallest cell by our measurement error (perhaps); or should
we go into entirely different coordinates that express some correlation
between nearby picture elements (probably). In trying to answer these
questions, we should look eagerly for evidence of any systematic failure
of PME reconstructions based on the present hypothesis space, which
would give us a clue to a better one.

In maximum-entropy spectrum analysis only one explicit solution,
that of Burg (1967) is available thus far, and although again very
important advances have been made with it, the problem of the
hypothesis space has hardly been faced as yet. There is no reason to
think that the proper space for a geophysical time series must also be
right for an econometric one or an ecological one.

These remarks may indicate how irrelevant to actual scientific
practice are mathematical/philosophical hangups over issues that do
not refer to any specific real problem. In Francis Perry’s comments
there 18 a good recognition of this, and some deep thought about it.
More thinking along those lines, in a variety of real situations, is
needed.

As an interpretation of PME on a space S, Skyrms points out that one
can mmagine S enlarged to S" on which Bayes’s theorem can be
appplied, leading asymptotically to the same mathematical solution. Of
course one can do this; indeed, that is just what Darwin and Fowler did
in the 1920’s, and what Schrodinger (1948) and Eyring (1965) adopted
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as the basic principle of statistical mechanics. What this shows is only
that two problems can be conceptually different, but so similar mathe-
matically that the same numerical algorithm can be used for both.

* *® *

Immediately after writing this last sentence, it struck me that perhaps
I am misjudging Skyrms’ intentions. It may be that Skyrms was not
offering his work as a new contribution to the field, but wanted only to
translate something already known into his own language. In that case
we are concerned only with the suitability of that language as a
description of the real problems where we use PME.

Now in most real problems there 1s no “‘random experiment’™ and no
“random variables”’; and the extension space S" 1s purely a figment of
our imagination. Surely, it is inelegant and unnecessary to drag in ali
these extraneous notions in order to “justify” the PME procedure.

We started with a clear, simple problem in which a clear, simple
desideratum (honesty) points to a solution that proves to be feasible to
calculate and useful in practice. It seems to me that the important
advance and a major virtue of PME is that it gives us this in such a
direct way that avoids all the clutter that was invoked in the past.

On the other hand, there are some problems in which the space 8" is
actually present, in which case application of Bayes’ theorem is clearly
the fundamentally correct procedure. But to do this exactly for finite n
proves to be very tedious mathematically, and in practice one quickly
discovers that if n is reasonably large there is an excellent ap-
proximation. It is, of course, just that PME solution!

After going through the Bayesian analysis and extracting the asymp-
totic solution. Darwin-Fowler, Schrodinger, Eyring, and everybody else
since the time of Gibbs has reverted, for their actual useful calculations,
to the PME algorithm.

The mathematical relations noted by Skyrms are, therefore, quite
correct and well-known; but I should draw from them a very diftferent
conclusion from his. In the real world, even when that space $" actually
exists, it 1s almost always the direct application of PME that gives us the
pragmatically useful results.

I have already deplored the use of the terms “"prior” and “posterior”
to describe two PME solutions with difterent constraints. Skyrms
certainly confuses his readers by this, and perhaps aiso himself.
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It 1s hard to imagine a more unfortunate, ill-advised remark than his
parting shot: “Is it good methodology for the blind man to assume that
the road is smooth and wide because he cannot see the ruts or the
ditch?”” This utter falsification of what PME is doing casts a cloud of
doubt over everything else in Skyrms’ paper. The success of maximum-
entropy image reconstruction in bringing out detail that other methods
have failed to see is one of its most important achicvements. In a few
years, devices based on PME should be available just to help blind men
to perceive those ruts.

GOSSIP OR MEDDLING?

Of course, if philosophers wish to discuss the rationale of science
among themselves, in their own journals, without pretending that they
are making new contributions to science, they have every right to do so.
We physicists also gossip among ourselves about work in other fields —
current developments in biology, for example — expressing all kinds of
opinions, without thereby pretending that we are making new con-
tributions to biology.

But a physicist, not well informed about the whole general status of
the field, would not try to meddle in biology by injecting his own
half-formed ideas into the biological journals; for he would almost
surely be repeating a line of thought that professional biologists have
long since thought of and disposed of; and would only make himself
ridiculous in their eyes.

And nothing could be more ridiculous than for a physicist to tell
biologists how they ought to mend their ways by attacking particular
remarks made by Crick and Watson in 1951, while ignoring everything
that Crick proceeded to do, from that beginning, in the 1960’s and
1970’s.

By the same token, when a philosopher takes it upon himself to move
into the scientific journals with criticisms clearly intended to influence
scientific practice, then I think he has an obligation to get his technical
facts and documentation right, and to inform himself about current
activity in the field; otherwise he will at best only make a clown of
himself, and at worst do serious damage.

This brings us, obviously, to the matter of Shimony. I am not a
participant, but, like other readers, only a bewildered onlooker, in the
spectacle of his epic struggles with himself. He seems to have made it
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his lifelong career to misconstrue everything I wrote many years ago,
and then compose long, pedantic commentaries, full of technical errors
and misstatements of documentable fact, showing no awareness of
anything done in this field since then — and which, to cap it all oft, attack
not my statements, but only his own misunderstandings of them. The
conflict is not between Shimony and me, but between Shimony and the
English language.

I want to defend both myself and Shannon against Shimony’s
misleading accounts of our work. As anyone can verify, the argument
that Shimony attributes to Shannon (1948) leading to Shimony’s Eqg.
(1), omits the appeal to consistency that gives Shannon’s argument its
force; indeed, if Shannon’s derivation had no more substance than the
one Shimony reports, the name “‘Claude Shannon™ and the term
“Information Theory” would be quite unknown today.

Then he turns to my work. I deny that T have ever defined PME by
the statement that Shimony attributes to me. The phrase *“"T'he p; have
those values . .. " is anathema, conveying the opposite of my meaning.
Then he too commits that error of terminology and notation; maxi-
mum-entropy probabilities are not only called **posterior probabilities™
but even (Eq. 4) denoted explicitly by the symbol for a conditional
probability! In the works of others, this only causes confusion; but for
Shimony this sets off a chain reaction of further errors.

The notation which confuses two quite different things in (4) deludes
him into failing to see the distinction between the Lagrange multiphcr 8
of a maximum-entropy problem and an estimated parameter of a
sampling distribution. This in turn leads him to suppose that he and
Friedman have discovered an ““anomaly”, in the fact that PME leads to
the value 8 = 0 when there are no constraints other than normalization.

Although the actual result (2) has been a standard part of probability
theory for 250 years, his attempts to interpret it in terms of a probability
distribution for a Lagrange muitiplier leads him to a quite new and
startling conclusion. We are not all in hell, although we need not
question Shimony’s account of his own predicament.

Errors in this argument have now been pointed out five umes, by
Tribus and Motroni (1972), Hobson (1972), Gage and Hestenes (1973),
Jaynes (1978), and Cyranski (1979); yet he persists in publishing that
same argument over and over again. So we can hardly hope to
enlighten him with anything written here; but in the following remarks
addressed to others we point out a few elementary technical facts that
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will help to avoid the pitfall in which Shimony seems permanently
trapped.

In the maximum entropy problem, the quantity 8 had no previous
existence; 1t 1s a Lagrange multiplier that is created only in the process
of entropy maximization. But it appears only for mathematical con-
venience; the problem could be solved also by direct algebraic reduc-
tion without ever introducing it. 8 is not “‘estimated”, but defined, by
the PME formalism. That it is defined exactly and not approximately,
far from being cause for complaint, merely indicates that our maximiza-
tton problem was mathematically well posed. There would be cause
to complain were it otherwise.

It does not make sense, therefore, to speak of having prior knowledge
of $, much less of honestly representing that knowledge. A Lagrange
multiplier does not have a probability distribution; it is no different, in
principle, from a normalization constant that also appears in a prob-
ability distribution. That too is not estimated, but defined; and indeed,
to infinite accuracy. Would Shimony complain that this too violates the
honesty maxim, and demand that henceforth we use inaccurate nor-
malization?

The question is not at all facetious; for the A, in the PME formalism is
the Lagrange multiplier that is chosen to fit the normalization con-
straint, so perhaps he has already done this.

Of course, PME is different from Bayes’ theorem, becduse it ad-
dresses a different problem, with a different kind of information, and for
a different purpose. A MAXENT distribution is not a “‘posterior
distribution” and we are not making inferences about any parameters in
a previously defined sampling distribution. My attempts to point this out
(Jaynes, 1978) were not comprehended because of Shimony’s seeming
inability to read a simple English sentence.

Shimony quotes two statements of mine, which he reports as claiming
that a proposition used to provide a constraint in PME cannot be used
as a conditioning statement in Bayes’ theorem. But I made no such claim,
as Shimony might see for himself if he would only read the statements
that he quotes. If someone points out a rock that is white but not round,
and another that is round but not white, he has not thereby denied that it
is possible for a rock to be both white and round; he has merely noted that
the examples before him do not have that property.

Indeed, it would hardly be a feat to produce such a double-action
proposition, if one had one of type d and one of type D. Their
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conjunction Dd would seem to do the job, would it not?

Since most of the rest of his discussion is a quixotic attempt to tilt with
a claim that was never made, it does not seem worth examining here.

Not satisfied with confusing PME with Bayes’ theorem and with
parameter estimation, Shimony has also confused it with the Carnap
inductive methods and complained that it is not equivalent to any with
finite lambda. But in the real world, this difference is one of the main
merits of PME. No scientist would use a Carnap method to predict the
future of a geophysical or economic time series from its past, because
that method presupposes that correlations persist undiminished for all
time. Maximum entropy spectrum analysis automatically leads us to
realistic predictions in these problems, because it introduces only those
correlations (autoregressive coefficients) for which there is evidence in
the data; this is just that “honesty maxim™ at work (Jaynes, 1982).

Shimony has now published the incredible statement that, because of
his lack of understanding, the use of PME “ought to be curtailed”,
which sounds more like a threat than the observation of a scholar.
Those of us who are engaged in constructive activities, in which PME
has proved to be a useful tool, will continue to use it with or without
Shimony’s permission.

CONCLUSION

Of course, the rationale of PME is so different from what has been
taught in “orthodox™ statistics courses for fifty years, that it causes
conceptual hangups for many with conventional training. But begin-
ning students have no difficulty with it, for it is just a mathematical
model of the natural, common sense way in which anybody does
conduct his inferences in problems of everyday life.

The difficulties that seem so prominent in the literature today are,
therefore, only transient phenomena that will disappear automatically
in time. Indeed, this revolution in our attitude toward inference is
already an accomplished fact among those concerned with a few
specialized applications; with a little familarity in its use its advantages
are apparent and it no longer seems strange. It is the idea that inference
was once thought to be tied to frequencies in random experiments, that
will seem strange to future generations.
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